
In a Displaced and Dilated Address Space (DDAS):

• Code pointers are decoupled from their true code location in the virtual 

address space (VAS) and remapped to a location in the superimposed 

Displaced and Dilated Address Space (DDAS). 

• DDAS exploits the vast unused portions of the virtual address space to

displace code pointers by a 64-bit key, and dilate the code segment

through the insertion of untouchable, invalid memory regions at an 

instruction-level granularity. 

• To eliminate performance impacts on the memory system, code pointers are 

derandomized prior to use. Code pointers verified (i.e., that they do not 

access dilated, invalid memory) and are translated from DDAS to the true 

VAS location prior to indirect jumps.

• Many prevalent security exploits are underpinned by precise knowledge of

the memory layout of the victim machine. Specifically, to thwart control-flow

attacks, code pointers must be protected.

• A corrupted code pointer can effectively redirect program execution to

attacker-chosen code gadgets, giving attackers the necessary foothold to

circumvent system protections.

• Attackers corrupt code pointers by exploiting absolute and relative

distances between code gadgets on the control plane.

• In this work, we introduce Displaced and Dilated Address Spaces

(DDAS), which obfuscates both absolute and relative distances of code

objects to thwart control plane attacks.

DDAS Overview

Introduction

We prototyped DDAS control plane protections in gem5,

a cycle accurate simulator, and ran experiments to measure 

the entropy and security of our defense for three different 

configurations with re-randomization. 

• A jump to the next instruction was dilated by 100 kB on average

• Untouchable, invalid memory regions made up > 99.996% of memory on 

average, resulting in less than a 0.01% likelihood of forging a code 

pointer without detection

• Performance overheads were well below 5% for all analyzed configurations, 

will similarly low power and silicon area overheads. 
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Our defense leverages hardware support

to achieve negligible performance

overheads, at 1% with re-randomization

every 50ms, while providing strong

probabilistic guarantees against

control-flow hijacking attacks

Figure 1. DDAS Overview. At load time, a 56 B function is displaced by 8 kB and dilated to 

14.3 kB within the Displaced and Dilated Address Space. Invalid memory regions are inserted 

between instructions and trigger security exceptions when accessed. Every 50 ms, the 

function’s layout re-randomizes, changing in size and location. In DDAS, this function can be 

maximally inflated to 14 MB, and the entire address space can be dilated by >250,000 times. 

The Displaced and Dilated Address Space is configured programmatically by

either a basic or table-based translation equation. 

• The DDAS → VAS translation is determined by a function keyed by secret 

layout parameters (e.g., size of displacement, size and location of dilation).

• The table-based translation serves to increase spatial diversity by varying 

the size and location of dilation across functions, however, the basic 

translation is presented below for simplicity.  

Figure 2. Basic DDAS Configuration and Translation. The VAS is divided into segments of 

size Svas. Each segment is mapped into DDAS and dilated by an i-byte hole to create a DDAS 

segment of size Sddas. The entire address space is shifted by d bytes.

Addas= Avas + d + ⎣Avas/Svas⎦ i

We implement Displaced and Dilated Address Spaces is a out-of-order RISC-V 

pipeline by instrumenting the execute stage to contain a functional unit for 

indirect jumps that performs the DDAS → VAS translation. 

We also instrument the pipeline with support for runtime re-randomization of 

the DDAS memory configuration, including:

• Tagged memory to identify code pointer values

• Logic to generate new keys and update code pointers during runtime 

(termed DDAS Remapper)

Figure 3. DDAS with Re-Randomization. The DDAS → VAS FU and register file are 

extended to accommodate the mixed state of pointers during re-randomization. The DDAS 

Remapper uses tagged memory to identify and update stale code pointers.

Figure 4. Entropy of 

Indirect Jumps. 

The primary axis, in 

orange, shows the 

entropy of indirect 

jumps, where entropy 

is modeled as log2 of 

the dilation in bytes. 

The secondary axis, in 

blue, shows the 

probability that a given 

configuration will not 

inflate an indirect 

jump.

Figure 5. Average 

Runtime Overheads.   

The average 

overhead

for the SPEC 

CPU2006 benchmark 

suite at varied re-

randomization

rates for the analyzed 

DDAS configurations. 

We analyzed three 

configurations: a basic 

translation and two 

differently sized table-

based translations. 




