
In a Displaced and Dilated Address Space (DDAS):

• Code pointers are decoupled from their true code location in the virtual

address space (VAS) and remapped to a location in the superimposed

Displaced and Dilated Address Space (DDAS).

• DDAS exploits the vast unused portions of the virtual address space to

displace code pointers by a 64-bit key, and dilate the code segment

through the insertion of untouchable, invalid memory regions at an

instruction-level granularity.

• To eliminate performance impacts on the memory system, code pointers are

derandomized prior to use. Code pointers verified (i.e., that they do not

access dilated, invalid memory) and are translated from DDAS to the true

VAS location prior to indirect jumps.

• Many prevalent security exploits are underpinned by precise knowledge of

the memory layout of the victim machine. Specifically, to thwart control-flow

attacks, code pointers must be protected.

• A corrupted code pointer can effectively redirect program execution to

attacker-chosen code gadgets, giving attackers the necessary foothold to

circumvent system protections.

• Attackers corrupt code pointers by exploiting absolute and relative

distances between code gadgets on the control plane.

• In this work, we introduce Displaced and Dilated Address Spaces

(DDAS), which obfuscates both absolute and relative distances of code

objects to thwart control plane attacks.

DDAS Overview

Introduction

We prototyped DDAS control plane protections in gem5,

a cycle accurate simulator, and ran experiments to measure

the entropy and security of our defense for three different

configurations with re-randomization.

• A jump to the next instruction was dilated by 100 kB on average

• Untouchable, invalid memory regions made up > 99.996% of memory on

average, resulting in less than a 0.01% likelihood of forging a code

pointer without detection

• Performance overheads were well below 5% for all analyzed configurations,

will similarly low power and silicon area overheads.

Evaluation

DDAS Memory Configuration

DDAS Hardware Implementation

Thwarting

Control Plane

Attacks with

Displaced and

Dilated Address

Spaces
Lauren Biernacki, Mark Gallagher,

Valeria Bertacco, Todd Austin

University of Michigan, Ann Arbor

Our defense leverages hardware support

to achieve negligible performance

overheads, at 1% with re-randomization

every 50ms, while providing strong

probabilistic guarantees against

control-flow hijacking attacks

Figure 1. DDAS Overview. At load time, a 56 B function is displaced by 8 kB and dilated to

14.3 kB within the Displaced and Dilated Address Space. Invalid memory regions are inserted

between instructions and trigger security exceptions when accessed. Every 50 ms, the

function’s layout re-randomizes, changing in size and location. In DDAS, this function can be

maximally inflated to 14 MB, and the entire address space can be dilated by >250,000 times.

The Displaced and Dilated Address Space is configured programmatically by

either a basic or table-based translation equation.

• The DDAS → VAS translation is determined by a function keyed by secret

layout parameters (e.g., size of displacement, size and location of dilation).

• The table-based translation serves to increase spatial diversity by varying

the size and location of dilation across functions, however, the basic

translation is presented below for simplicity.

Figure 2. Basic DDAS Configuration and Translation. The VAS is divided into segments of

size Svas. Each segment is mapped into DDAS and dilated by an i-byte hole to create a DDAS

segment of size Sddas. The entire address space is shifted by d bytes.

Addas= Avas + d + ⎣Avas/Svas⎦ i

We implement Displaced and Dilated Address Spaces is a out-of-order RISC-V

pipeline by instrumenting the execute stage to contain a functional unit for

indirect jumps that performs the DDAS → VAS translation.

We also instrument the pipeline with support for runtime re-randomization of

the DDAS memory configuration, including:

• Tagged memory to identify code pointer values

• Logic to generate new keys and update code pointers during runtime

(termed DDAS Remapper)

Figure 3. DDAS with Re-Randomization. The DDAS → VAS FU and register file are

extended to accommodate the mixed state of pointers during re-randomization. The DDAS

Remapper uses tagged memory to identify and update stale code pointers.

Figure 4. Entropy of

Indirect Jumps.

The primary axis, in

orange, shows the

entropy of indirect

jumps, where entropy

is modeled as log2 of

the dilation in bytes.

The secondary axis, in

blue, shows the

probability that a given

configuration will not

inflate an indirect

jump.

Figure 5. Average

Runtime Overheads.

The average

overhead

for the SPEC

CPU2006 benchmark

suite at varied re-

randomization

rates for the analyzed

DDAS configurations.

We analyzed three

configurations: a basic

translation and two

differently sized table-

based translations.

