Thwarting Control Plane Attacks
with Displaced and Dilated
Address Spaces

Lauren Biernacki, Mark Gallagher, Valeria Bertacco, Todd Austin

COMPUTER SCIENCE 2020 IEEE International Symposium on
M I:SE él\ll\ll\l?ERESyf‘gylyl\EIEEIIGl\J\E Hardware Oriented Security and Trust (HOST)

Many prevalent security exploits are underpinned by
precise knowledge of the memory layout of
the victim machine.

M | (SE

Many prevalent security exploits are underpinned by

precise knowledge of the memory layout of
the victim machine.

ude <stdio.h>

ude <string.h>

— void target () {

printf ("Reached target\n");
hacker@victim:~$./bin “AAAA...A\x4a\x01\x01\x00"H }
(=~

= void foo(char* strl) {
Location/Representation of Code Pointers char buf([32];

strcpy (buf, strl) ;é

L,
..SStack Buffer Overflow!

L]
| —
return; __/

}

hacker@victim:~S

int main(int argc, char* argvl[]) {

foo(argv[l]);
return 0;

}

M | (SE

Many prevalent security exploits are underpinned by
precise knowledge of the memory layout of
the victim machine.

Ox4ae
48
0

M| (3

Many prevalent security exploits are underpinned by

Displaced and Dilated Address Space

M | (3

Many prevalent security exploits are underpinned by
precise knowledge of the memory layout of
the victim machine.

_l Bl R = _
0
l -I-
0

No impact on spatial locality;, High entropy randomization; = Attack Detection; Runtime Re-Randomization,

M | (SE

Displaced and Dilated Address Space

No impact on spatial locality; High entropy randomization; ~Attack Detection;, Runtime Re-Randomization;

Displaced and Dilated Address Space

No impact on spatial locality; High entropy randomization; ~Attack Detection; Runtime Re-Randomization;

We decouple code pointers from true code location in the virtual address space
(VAS) by representing them in a superimposed address space termed the
Displaced and Dilated Address Space (DDAS)

DDAS

0 AN

Ox4a

VAS orass| Data foo
0

Displaced and Dilated Address Space

No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

We combine two techniques to obfuscate the code segment:
1.) Displacement by a 64-bit key
2.) Dilation by inserting holes at an instruction-level granularity

DDAS _—_

0

VAS

0

Displaced and Dilated Address Space

No impact on spatial locality; High entropy randomization; ~Attack Detection; Runtime Re-Randomization;

We programmatically translate pointers between the DDAS and VAS at runtime,
allowing us to detect accesses to the dilated holes that interleave instructions

Security Exception

VAS aee:z| Data foo

Displaced and Dilated Address Space

No impact on spatial locality; High entropy randomization; ~Attack Detection;, Runtime Re-Randomization;

To defend against memory disclosures, we leverage hardware to efficiently
re-randomize the DDAS layout under running programs

DnAsm] 1m

0

VAS

Displaced and Dilated Address Space

No impact on spatial locality; High entropy randomization; ~Attack Detection;, Runtime Re-Randomization;

High entropy randomization; Attack Detection:

No impact on spatial locality;
Runtime Re-Randomization;

With hardware support, our defense has negligible performance overheads,
at 1% with re-randomization every 50 milliseconds, while providing strong
probabilistic guarantees against control-flow hijacking attacks

M| (3

Displaced and Dilated Address Space

DDAS — VAS Translation

RISC-V Hardware Implementation

Security & Performance Analysis
Concluding Thoughts

DDAS — VAS Translation

The DDAS memory configuration is determined programmatically
by a translation function, and all code pointers are expressed
as 64-bit DDAS values

COde_POinter 0x42e01488 | ————p | 0xf£658140 VAS to DDAS
Creation
Code Pointer DDAS to VAS +

. O0x4ae01488 44— | 0xf£f658140 .
Use (e.g., jalr) = Security Check

DDAS — VAS Translation

The DDAS memory configuration is determined programmatically

by a translation function, and all code pointers are expressed
as 64-bit DDAS values

Basic DDAS Translation Table-Based DDAS Translation
r
s I _ s J Y i f ! - 3 J

~
Addas deas Addas deas
VAS ces VAS
r N
A vas sV&S A vas svas
Addas: Avas td+ |-Avas/svasJi Addas: Avas +td+ |-Avas/svasJi - T[Avas mod Svas]
Avas™ Adgas~d - l(Addas' d)/ deasJi Avss™ Aggas d 'I-(Addas' d)/ deasJ i -TI((A ggasd) Mod Syya5))/1]

| 15

DDAS — VAS Translation

The DDAS memory configuration is determined programmatically

by a translation function, and all code pointers are expressed
as 64-bit DDAS values

Basic DDAS Translation Table-Based DDAS Translation
r
s I _ s J Y i f ! - 3 J

~
Addas deas Addas deas
VAS ces VAS
r r
A vas sV&S A vas svas
Addas: Avas td+ |-Avas/svasJi Addas: Avas +td+ |-Avas/svasJi - T[A vas mod Svas]
Avas: Addas -d- I-(Addas' d)>>sddasJi Avas: Addas' d 'l(Addas' d) >>deasJ i 'T[((Addas'd) mod sddas))/f]

| 16

DDAS — VAS Translation

The DDAS memory configuration is determined programmatically

by a translation function, and all code pointers are expressed
as 64-bit DDAS values

Basic DDAS Functional Unit Table-Based DDAS Functional Unit

Upper Bits: ‘ | " | _ A ‘ Upper Bits: ‘ V| i | o
lia, -a)/s, e '09,(')| L - A ddas H lia, -a)ss,] \ L] A

Lower Bits:
(Aaau' d) mod sam

o Lower Bits:
Valid? (Ams' d) mod St

Valid?

Addas: Avas td+ |-Avas/svasJi Addas: Avas +td+ |-Avas/svasJi - T[Avas mod Svas]
Avas: Addas -d- I-(Addas' d)>>sddasJi Avas: Addas' d 'l(Addas' d) >>deasJ i 'T[((Addas'd) mod sddas))/f]

| 17

RISC-V Hardware Implementation

The use of 64-bit DDAS code pointers introduces a layer of indirection
that requires pipeline modifications to ensure correct control flow

Simplified RISC-V Pipeline

| Indirect
Jump

Insn. Insn. : Direct | Write
Fetch | Decode)Q_’ Dispatch Jump | Back
Func.
Unit

v

Registers

RISC-V Hardware Implementation

During runtime re-randomization, the DDAS layout is periodically
re-keyed and code pointers are updated accordingly

Simplified RISC-V Pipeline w/ Runtime Re-Randomization

I:l DDAS Hardware

Write
Back

Insn. Insn. i
Feteh [™ ™| Decode ™ Fﬂlspazch)

DDAS Remapper

| Registers ‘
DDAS — VAS VAS — DDAS

0ld Keys New Keys

| Memory Scan Logic |

RISC-V Hardware Implementation

During runtime re-randomization, the DDAS layout is periodically
re-keyed and code pointers are updated accordingly

Simplified RISC-V Pipeline w/ Runtime Re-Randomization

I:l DDAS Hardware

Write
Back

Insn. Insn. i
Feteh [™ ™| Decode ™ Fﬂlspazch)

. DDAS Remapper

: 2-bit

Registers

| Tags DDAS — VAS VAS — DDAS
0ld Keys New Keys

| Memory Scan Logic |

Results & Analysis: Methodology

We implemented DDAS on a RISC-V out-of-order core in the gem5
simulator in system call emulation mode

We analyze three distinct implementations of DDAS, both with
load-time and runtime re-randomization

Functional Unit Power of 2 Maximum segment
Latency Constraints size before repition
Basic DDAS 1 cycle Sddas @Nd i N/A
Table-Based DDAS
ok entries 2 cycles Sggas AN 1 8 kB
Table-Based DDAS 4 cycles Syuues @Nd 1 128 kB

32k entries

Results & Analysis: Security

With Displaced and Dilated Address Spaces we:
* Obfuscate valid code pointers in a 254 byte address space

* Prevent relative distances from being used to derive code
gadgets from a leaked pointer

* Detect attempts to forge a code pointer

Jump to Next Insn 100 kB dilation, on average

Jump to Next Page >100 MB dilation, on average

Percentage of In-Memory Traps > 99.996, on average

Results & Analysis: Security

Entropy of Indirect Jumps for Varying Configurations

-®/® Baisc DDAS
80 T A Table-Based, 2k DDAS [T
I8 Table-Based, 32k DDAS
70 1 ===- Absolute T g
60 1 - ::
E \G\
g 50 a 2 log,(Average bytes of
N o
&g 40 | o4 B displacement)
= -~ log,(Average bytes of
20 5 r 02 = dilation)
10 + n &

A

B ‘e
0-—/|\—/\—/\/I\Rﬂ@DDQDDL‘[\DDLT_\DDLT_\DD!?DDQDDQDDQDDL‘FIDDQEIT
22 25 28 211 214 217 220 223 926 D29 932 935 938 94l

Jump Distance (B)

Results & Analysis: Security

Entropy of Indirect Jumps for Varying Configurations

95% likelihood that
jumps > 32B are dilated

-®/® Baisc DDAS
T A Table-Based, 2k DDAS | 0.8
I8 Table-Based, 32k DDAS
T ———- -+ 0.7
Absolute S
... =
, T +— 0.6 =
2 1 A
o o
e =
= 3
o c._.
2 Qo
. g
£ g
i3 <
©
=
—

22 25 28 211 214 217 220 923 926 D29 9232 935 238 D4l
Jump Distance (B)

Results & Analysis: Performance

Average Performance Overheads on SPEC CPU2006 for Varying Configurations

6.00% ; B Basic (1 cycle) i

[B Table-Based, 2k (2 cycle)
so0v I B Table-Based, 32k (4 cycle) ~1.1% Overhead at 50ms
I re-randomization for
4.00% | recommended config.

< 2% Overhead without
re-randomization

/

3.00% 1

2.00% 1

Avegpage Performance Overhead

0.00% L

Load-Time 200ms 100ms 50ms 25ms 10ms
(Tagless)

Re-Randomization Rate

Conclusions

We introduce Displaced and Dilated Address Spaces, a
superimposed address space where all code pointers are expressed

°* Randomize absolute addresses with displacement (63-bits of entropy)
* Randomize relative addresses with dilation (55-bits of entropy)
* Detects attempts to forge a code pointers

ooes [N 1| 1
0

VAS

Conclusions

We introduce Displaced and Dilated Address Spaces, a
superimposed address space where all code pointers are expressed

°* Randomize absolute addresses with displacement (63-bits of entropy)
* Randomize relative addresses with dilation (55-bits of entropy)
* Detects attempts to forge a code pointers

By leveraging hardware support, we are able to
implement this defense while keeping performance
overheads well below 5%

Thwarting Control Plane Attacks
with Displaced and Dilated
Address Spaces

Questions? B LBiernac@UMich.edu Y @LMBiernacki

COMPUTER SCIENCE 2020 IEEE International Symposium on
M I:SE él\ll\ll\l?ERESyf‘gylyl\EIEEIIGl\J\E Hardware Oriented Security and Trust (HOST)

