Thwarting Control Plane Attacks with Displaced and Dilated Address Spaces

Lauren Biernacki, Mark Gallagher, Valeria Bertacco, Todd Austin

Displaced and Dilated Address Space

No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

We **decouple code pointers** from true code location in the virtual address space (VAS) by representing them in a **superimposed address space** termed the Displaced and Dilated Address Space (DDAS)

No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

We combine two techniques to obfuscate the code segment:

- 1.) Displacement by a 64-bit key
- 2.) Dilation by inserting holes at an instruction-level granularity

No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

We *programmatically* translate pointers between the DDAS and VAS at runtime, allowing us to *detect accesses* to the dilated holes that interleave instructions

No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

To defend against memory disclosures, we leverage hardware to efficiently **re-randomize** the DDAS layout under running programs

No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

With hardware support, our defense has *negligible performance overheads*, at *1% with re-randomization every 50 milliseconds*, while providing strong probabilistic guarantees against control-flow hijacking attacks

 $DDAS \rightarrow VAS$ Translation

RISC-V Hardware Implementation

Security & Performance Analysis

Concluding Thoughts

RISC-V Hardware Implementation

The use of 64-bit DDAS code pointers introduces a layer of indirection that requires *pipeline modifications* to ensure correct control flow

RISC-V Hardware Implementation

During runtime re-randomization, the DDAS layout is *periodically re-keyed* and *code pointers are updated* accordingly

RISC-V Hardware Implementation

During runtime re-randomization, the DDAS layout is *periodically re-keyed* and *code pointers are updated* accordingly

Results & Analysis: Methodology

We implemented DDAS on a RISC-V out-of-order core in the *gem5* simulator in system call emulation mode

We analyze *three distinct implementations* of DDAS, both with load-time and runtime re-randomization

	Functional Unit Latency	Power of 2 Constraints	Maximum segment size before repition
Basic DDAS	1 cycle	S_{ddas} and i	N/A
Table-Based DDAS 2k entries	2 cycles	S_{ddas} and r	8 kB
Table-Based DDAS 32k entries	4 cycles	S_{ddas} and r	128 kB

Results & Analysis: Security

With Displaced and Dilated Address Spaces we:

- Obfuscate valid code pointers in a 2⁶⁴ byte address space
- Prevent relative distances from being used to derive code gadgets from a leaked pointer
- Detect attempts to forge a code pointer

Jump to Next Insn	100 kB dilation, on average	
Jump to Next Page	>100 MB dilation, on average	
Percentage of In-Memory Traps	> 99.996 , on average	

Results & Analysis: Security

Results & Analysis: Security

Results & Analysis: Performance

Conclusions

We introduce Displaced and Dilated Address Spaces, a superimposed address space where all code pointers are expressed

- Randomize absolute addresses with displacement (63-bits of entropy)
- Randomize relative addresses with dilation (55-bits of entropy)
- Detects attempts to forge a code pointers

Conclusions

We introduce Displaced and Dilated Address Spaces, a superimposed address space where all code pointers are expressed

- Randomize absolute addresses with displacement (63-bits of entropy)
- Randomize relative addresses with dilation (55-bits of entropy)
- Detects attempts to forge a code pointers

Thwarting Control Plane Attacks with Displaced and Dilated Address Spaces

Questions?

