
Thwarting Control Plane Attacks

with Displaced and Dilated

Address Spaces

Lauren Biernacki, Mark Gallagher, Valeria Bertacco, Todd Austin

Hardware Oriented Security and Trust (HOST)
2020 IEEE International Symposium on

Many prevalent security exploits are underpinned by
precise knowledge of the memory layout of
the victim machine.

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#include <stdio.h>

#include <string.h>

void target() {

printf("Reached target\n");

}

void foo(char* str1) {

char buf[32];

strcpy(buf, str1);

...

return;

}

int main(int argc, char* argv[]) {

foo(argv[1]);

return 0;

}

Many prevalent security exploits are underpinned by
precise knowledge of the memory layout of
the victim machine.

3

hacker@victim:~$./bin “AAAA…A\x4a\x01\x01\x00”

hacker@victim:~$

Reached target

#include <stdio.h>

#include <string.h>

void target() {

printf("Reached target\n");

}

void foo(char* str1) {

char buf[32];

strcpy(buf, str1);

...

return;

}

int main(int argc, char* argv[]) {

foo(argv[1]);

return 0;

}

Stack Buffer Overflow!
Location/Representation of Code Pointers

Many prevalent security exploits are underpinned by
precise knowledge of the memory layout of
the victim machine.

4

0

CodeData foo
0xff6

58140

0x4ae

01488
target

Many prevalent security exploits are underpinned by
precise knowledge of the memory layout of
the victim machine.

5

0

CodeData foo
0xff6

58140

0x4ae

01488
target

Displaced and Dilated Address Space

Many prevalent security exploits are underpinned by
precise knowledge of the memory layout of
the victim machine.

6

0

CodeData foo
0xff6

58140

0x4ae

01488
target

0

Codefoo target

0

Codefoo target

0

foo target

No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

7

Displaced and Dilated Address Space
No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

8

We decouple code pointers from true code location in the virtual address space

(VAS) by representing them in a superimposed address space termed the

Displaced and Dilated Address Space (DDAS)

DDAS

0

0

VAS CodeData foo
0xff6

58140

0x4ae

01488

Displaced and Dilated Address Space
High entropy randomization; Attack Detection; Runtime Re-Randomization;

We combine two techniques to obfuscate the code segment:

1.) Displacement by a 64-bit key

2.) Dilation by inserting holes at an instruction-level granularity

9
9

Displaced and Dilated Address Space

DDAS

0

0

VAS

9

…

No impact on spatial locality; Attack Detection; Runtime Re-Randomization;

10
10

Displaced and Dilated Address Space

DDAS

0

0

VAS Data Codefoo
0xdea

dbeef

Security Exception

…

No impact on spatial locality; High entropy randomization; Runtime Re-Randomization;

We programmatically translate pointers between the DDAS and VAS at runtime,

allowing us to detect accesses to the dilated holes that interleave instructions

DDAS

0

0

VAS

11
11

Displaced and Dilated Address Space

…

No impact on spatial locality; High entropy randomization; Attack Detection; ;

To defend against memory disclosures, we leverage hardware to efficiently

re-randomize the DDAS layout under running programs

12
12

Displaced and Dilated Address Space
No impact on spatial locality; High entropy randomization; Attack Detection; Runtime Re-Randomization;

With hardware support, our defense has negligible performance overheads,

at 1% with re-randomization every 50 milliseconds, while providing strong

probabilistic guarantees against control-flow hijacking attacks

13
13

Displaced and Dilated Address Space
DDAS → VAS Translation

RISC-V Hardware Implementation

Security & Performance Analysis

Concluding Thoughts

14
14

DDAS → VAS Translation

The DDAS memory configuration is determined programmatically

by a translation function, and all code pointers are expressed

as 64-bit DDAS values

0x4ae01488 VAS to DDAS0xff658140
Code Pointer

Creation

0x4ae01488
DDAS to VAS +
Security Check

0xff658140
Code Pointer

Use (e.g., jalr)

15
15

DDAS → VAS Translation

Table-Based DDAS Translation

The DDAS memory configuration is determined programmatically

by a translation function, and all code pointers are expressed

as 64-bit DDAS values

Basic DDAS Translation

Addas= Avas + d + ⎣Avas/Svas⎦ i

Avas= Addas- d -⎣(Addas- d)/Sddas⎦ i -T[((Addas-d) mod Sddas))/r]Avas= Addas - d - ⎣(Addas- d)/Sddas⎦ i

Addas= Avas + d + ⎣Avas/Svas⎦ i - T[Avas mod Svas]

16
16

DDAS → VAS Translation

Table-Based DDAS Translation

The DDAS memory configuration is determined programmatically

by a translation function, and all code pointers are expressed

as 64-bit DDAS values

Basic DDAS Translation

Addas= Avas + d + ⎣Avas/Svas⎦ i

Avas= Addas- d -⎣(Addas- d)/Sddas⎦ i -T[((Addas-d) mod Sddas))/r]Avas= Addas - d - ⎣(Addas- d)/Sddas⎦ i

Addas= Avas + d + ⎣Avas/Svas⎦ i - T[Avas mod Svas]

Avas= Addas - d - ⎣(Addas- d)>>Sddas⎦ i Avas= Addas- d -⎣(Addas- d) >>Sddas⎦ i -T[((Addas-d) mod Sddas))/r]

17
17

DDAS → VAS Translation

Table-Based DDAS Functional Unit

The DDAS memory configuration is determined programmatically

by a translation function, and all code pointers are expressed

as 64-bit DDAS values

Basic DDAS Functional Unit

Addas= Avas + d + ⎣Avas/Svas⎦ i

Avas= Addas- d -⎣(Addas- d)/Sddas⎦ i -T[((Addas-d) mod Sddas))/r]Avas= Addas - d - ⎣(Addas- d)/Sddas⎦ i

Addas= Avas + d + ⎣Avas/Svas⎦ i - T[Avas mod Svas]

Avas= Addas - d - ⎣(Addas- d)>>Sddas⎦ i Avas= Addas- d -⎣(Addas- d) >>Sddas⎦ i -T[((Addas-d) mod Sddas))/r]

Simplified RISC-V Pipeline

18
18

RISC-V Hardware Implementation

The use of 64-bit DDAS code pointers introduces a layer of indirection

that requires pipeline modifications to ensure correct control flow

Insn.
Fetch

Insn.
Decode

Dispatch
Write
Back

PC
Execute

Indirect
Jump

Direct
Jump

Func.
Unit

Registers

DDAS Hardware

Simplified RISC-V Pipeline w/ Runtime Re-Randomization

DDAS Hardware

19
19

RISC-V Hardware Implementation

During runtime re-randomization, the DDAS layout is periodically

re-keyed and code pointers are updated accordingly

Main Core

I-Cache D-Cache

Memory

1-bit
Tags

1-bit
Tags

DDAS Remapper

DDAS → VAS VAS → DDAS

Memory Scan Logic

Old Keys New Keys

Simplified RISC-V Pipeline w/ Runtime Re-Randomization

DDAS Hardware

20
20

RISC-V Hardware Implementation

During runtime re-randomization, the DDAS layout is periodically

re-keyed and code pointers are updated accordingly

Main Core

I-Cache D-Cache

Memory

1-bit
Tags

1-bit
Tags

DDAS Remapper

DDAS → VAS VAS → DDAS

Memory Scan Logic

Old Keys New Keys

Old Keys
New Keys

2-bit
Tags

21
21

Results & Analysis: Methodology

Functional Unit

Latency

Power of 2

Constraints

Maximum segment

size before repition

Basic DDAS.. 1 cycle Sddas and i N/A

Table-Based DDAS .

2k entries..
2 cycles Sddas and r 8 kB

Table-Based DDAS..

32k entries..
4 cycles Sddas and r 128 kB

We implemented DDAS on a RISC-V out-of-order core in the gem5

simulator in system call emulation mode

We analyze three distinct implementations of DDAS, both with

load-time and runtime re-randomization

22
22

Results & Analysis: Security

With Displaced and Dilated Address Spaces we:

• Obfuscate valid code pointers in a 264 byte address space

• Prevent relative distances from being used to derive code

gadgets from a leaked pointer

• Detect attempts to forge a code pointer

Jump to Next Insn 100 kB dilation, on average

Jump to Next Page >100 MB dilation, on average

Percentage of In-Memory Traps > 99.996, on average

23
23

Results & Analysis: Security

Entropy of Indirect Jumps for Varying Configurations

log2(Average bytes of

displacement)

log2(Average bytes of

dilation)

24
24

Results & Analysis: Security

Entropy of Indirect Jumps for Varying Configurations

95% likelihood that

jumps > 32B are dilated

25
25

Results & Analysis: Performance

Average Performance Overheads on SPEC CPU2006 for Varying Configurations

< 2% Overhead without

re-randomization

~1.1% Overhead at 50ms

re-randomization for

recommended config.

26
26

Conclusions

We introduce Displaced and Dilated Address Spaces, a

superimposed address space where all code pointers are expressed

• Randomize absolute addresses with displacement (63-bits of entropy)

• Randomize relative addresses with dilation (55-bits of entropy)

• Detects attempts to forge a code pointers

DDAS

0

0

VAS

…

27
27

Conclusions

We introduce Displaced and Dilated Address Spaces, a

superimposed address space where all code pointers are expressed

• Randomize absolute addresses with displacement (63-bits of entropy)

• Randomize relative addresses with dilation (55-bits of entropy)

• Detects attempts to forge a code pointers

DDAS

0

0

VAS

…
By leveraging hardware support, we are able to

implement this defense while keeping performance

overheads well below 5%

Thwarting Control Plane Attacks

with Displaced and Dilated

Address Spaces

Questions? LBiernac@UMich.edu @LMBiernacki

Hardware Oriented Security and Trust (HOST)
2020 IEEE International Symposium on

